Spatial representations of place cells in darkness are supported by path integration and border information

نویسندگان

  • Sijie Zhang
  • Fabian Schönfeld
  • Laurenz Wiskott
  • Denise Manahan-Vaughan
چکیده

Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment's border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information

Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial represen...

متن کامل

How environment and self-motion combine in neural representations of space.

Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor environments, these estimates can also be maintained and updated by integrating self-motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable...

متن کامل

14 Head Direction and Spatial View Cells in Primates, and Brain Mechanisms for Path Integration and Episodic Memory

The aims of this chapter are to show that there are head direction cells in primates as well as in rats; to describe their properties; to show that a new class of cells found in the primate hippocampus—spatial view cells—are different from head direction cells and from rat place cells; to show the utility of spatial view cells in forming episodic memories; to show how a single network can assoc...

متن کامل

Neural mechanisms for spatial computation

Locating oneself within an environment, remembering goal locations and planning routes are fundamental cognitive functions (Wolbers & Hegarty, 2010). Profound insights into the mechanisms for these cognitive abilities have come from the discovery of neurons in the hippocampus and entorhinal cortex with spatial firing properties. These neurons, which include place cells (O’Keefe, 1976), head dir...

متن کامل

Visual influence on path integration in darkness indicates a multimodal representation of large-scale space.

Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive vir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014